The authors have previously developed a logistic regression equation to predict the odds that a human T-cell lymphotropic virus type 1 (HTLV-1)-infected individual of specified genotype, age, and provirus load has HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in southern Japan. This study evaluated whether this equation is useful predictor for monitoring asymptomatic HTLV-1-seropositive carriers (HCs) in the same population. The authors genotyped 181 HCs for each HAM/TSP-associated gene (tumor necrosis factor [TNF]-alpha-863A/C, stromal cell-derived factor 1 (SDF-1) +801G/A, human leukocyte antigen [HLA]-A*02, HLA-Cw*08, HTLV-1 tax subgroup) and measured HTLV-1 provirus load in peripheral blood mononuclear cells using real-time polymerase chain reaction (PCR). Finally, the odds of HAM/TSP for each subject were calculated by using the equation and compared the results with clinical symptoms and laboratory findings. Although no clear difference was seen between the odds of HAM/TSP and either sex, family history of HAM/TSP or adult T-cell lenkemia (ATL), history of blood transfusion, it was found that brisk patellar deep tendon reflexes, which suggest latent central nervous system compromise, and flower cell-like abnormal lymphocytes, which is the morphological characteristic of ATL cells, were associated with a higher odds of HAM/TSP. The best-fit logistic regression equation may be useful for detecting subclinical abnormalities in HCs in southern Japan.