Tissue-specific methylation patterns and expression of the human apolipoprotein AI gene

J Biol Chem. 1990 Jan 15;265(2):1010-5.

Abstract

To better understand the tissue-specific expression of the human apolipoprotein (apo)AI gene, we performed a detailed analysis of the pattern of methylation of the gene in various human adult and embryonic tissues and in tissues of transgenic mice harboring the human apo-AI gene. In addition, the gene was analyzed also in liver and intestine-derived human cell lines (HepG2 and Caco2, respectively). Using methyl-sensitive restriction enzymes (HpaII, HhaI, and SmaI) and the appropriate radioactive probes, we were able to determine separately the status of methylation of the 5'-end, the body of the gene, and 3'-end flanking sequences. The apo-AI gene in tissues that express the gene was undermethylated at the 5'-end. However, the 5'-end of the gene in sperm and in all adult tissues that do not express the gene was heavily methylated. The body of the gene which contains a CpG island and the 3'-end flanking sequences were, in general, hypomethylated except for specific sites that showed partial methylation. In contrast, while the gene showed tissue-specific expression already in a 12-week-old embryo, the 5'-end was invariably hypomethylated in all tissues of the embryo. A human apo-AI transgene has recently been shown to be active exclusively in the liver, while the endogenous gene is expressed in both liver and intestine (6). We show here that the 5'-end of the apo-AI transgene was methylated in all tissues of the mouse (including intestine) except liver. The results presented here demonstrate a clear correlation between hypomethylation of the 5'-end and activity of the apo-AI gene. However, the observed methylation pattern of the gene in embryonic tissues suggests that tissue-specific expression precedes formation of the tissue-specific methylation pattern.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Apolipoprotein A-I
  • Apolipoproteins A / genetics*
  • Apolipoproteins A / metabolism
  • Blotting, Northern
  • Blotting, Southern
  • Gene Expression*
  • HeLa Cells
  • Humans
  • Methylation
  • Mice
  • Mice, Transgenic
  • Nucleic Acid Hybridization
  • Organ Specificity
  • RNA / isolation & purification
  • Restriction Mapping

Substances

  • Apolipoprotein A-I
  • Apolipoproteins A
  • RNA