Anthelmintic resistance is a major problem for the control of many parasitic nematode species and has become a major constraint to livestock production in many parts of the world. In spite of its increasing importance, there is still a poor understanding of the molecular and genetic basis of resistance. It is unclear which mutations contribute most to the resistance phenotype and how resistance alleles arise, are selected and spread in parasite populations. The main strategy used to identify mutations responsible for anthelmintic resistance has been to undertake experimental studies on candidate genes. These genes have been chosen predominantly on the basis of our knowledge of drug mode-of-action and the identification of mutations that can confer resistance in model organisms. The application of these approaches to the analysis of benzimidazole and ivermectin resistance is reviewed and the reasons for their relative success or failure are discussed. The inherent limitation of candidate gene studies is that they rely on very specific and narrow assumptions about the likely identity of resistance-associated genes. In contrast, forward genetic and functional genomic approaches do not make such assumptions, as illustrated by the successful application of these techniques in the study of insecticide resistance. Although there is an urgent need to apply these powerful approaches to anthelmintic resistance research, the basic methodologies and resources are still lacking. However, these are now being developed for the trichostrongylid nematode Haemonchus contortus and the current progress and research priorities in this area are discussed.