Reperfusion after a brief period of cardiac ischemia can lead to potentially lethal arrhythmias. Human epidemiological studies and experimental work with animals indicate that regular physical activity is associated with reductions in cardiovascular disease (CVD) risk factors and sudden cardiac death. Similarly, artificial selection of rats for high aerobic treadmill-running capacity (high-capacity runners; HCR) has been shown to reduce CVD risk factors relative to rats selected as low-capacity runners (LCR). Therefore, we tested the hypothesis that HCR, relative to LCR rats, would be less susceptible to ischemia-reperfusion-mediated ventricular tachyarrhythmias. To test this hypothesis, we measured the susceptibility to ventricular tachyarrhythmias produced by 3 min of occlusion and reperfusion of the left main coronary artery in conscious LCR and HCR rats. Results document a significantly lower incidence of ventricular tachyarrhythmias in HCR (3 of 11, 27.3%) relative to LCR (6 of 7, 85.6%) rats. The decreased susceptibility to tachyarrhythmias in HCR rats was associated with a reduced cardiac metabolic demand during ischemia (lower rate-pressure product and ST segment elevation) as well as a wider range for the autonomic control of heart rate. The HCR and LCR represent a unique substrate for evaluation of the mechanisms underlying ischemia-mediated cardiac arrhythmogenesis.