We have developed transgenic Chinese hamster V79 cell lines in order to examine the potential for a mouse aldo-keto reductase, AKR7A5, to protect against the toxicity of 4-hydroxynonenal (4-HNE) and related toxic aldehydes. Stable expression of mouse AKR7A5 in V79 cells conferred four-fold increased resistance to 4-HNE cytotoxicity using the MTT assay compared to empty vector-transfected V79 cells. Cells expressing AKR7A5 showed a decrease in mutation rate compared to control cells in the presence of 4-HNE as measured by HGPRT mutagenicity assay. Furthermore, the cells expressing AKR7A5 showed decreased 4-HNE-induced caspase-3 activity in both a time and dose-dependent manner compared to control cells. These results show that in V79 cells 4-HNE mediates apoptosis via caspase-3 activation and that the AKR7A5 enzyme is able to metabolize 4-HNE in cells, thereby attenuating 4-HNE-induced apoptosis. AKR7A isozymes may therefore be important in protecting against toxic aldehydes derived from lipid peroxidation in vivo.