The number of possible chemical formulae assigned to an accurate determined mass was significantly reduced by comparing spectral and theoretical isotope patterns based on mass measurement obtained with an ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometer (ESI-FTICR-MS) at high field intensity (7 T). Reduction is performed by rating congruency between experimental and theoretical pattern intensity and mass, and filtering out compositions with insufficient user-definable results. The methods used for isotope pattern simulation, peak searching, and comparison will be briefly described and evaluated on molecule ion signals of 25 compounds (300-1000 Da) applying a mass accuracy of +/-5 ppm, a set of eight elements with constant constraints (C0-200H0-1000N0-15O0-15S0-2Cl0-2Br0-2Ru0-1), natural isotope abundances and experimental resolution (full width at half maximum).