In this study, we investigated patients with focal neurodegenerative diseases to examine a formal linguistic distinction between classes of generalized quantifiers, like "some X" and "less than half of X." Our model of quantifier comprehension proposes that number knowledge is required to understand both first-order and higher-order quantifiers. The present results demonstrate that corticobasal degeneration (CBD) patients, who have number knowledge impairments but little evidence for a deficit understanding other aspects of language, are impaired in their comprehension of quantifiers relative to healthy seniors, Alzheimer's disease (AD) and frontotemporal dementia (FTD) patients [F(3,77)=4.98; p<.005]. Moreover, our model attempts to honor a distinction in complexity between classes of quantifiers such that working memory is required to comprehend higher-order quantifiers. Our results support this distinction by demonstrating that FTD and AD patients, who have working memory limitations, have greater difficulty understanding higher-order quantifiers relative to first-order quantifiers [F(1,77)=124.29; p<.001]. An important implication of these findings is that the meaning of generalized quantifiers appears to involve two dissociable components, number knowledge and working memory, which are supported by distinct brain regions.