Stimulus-secretion coupling in exocrine glands involves Ca2+ release from intracellular stores. In endoplasmic reticulum vesicle preparations from rat exocrine pancreas, an inositol 1,4,5-trisphosphate(InsP3)-sensitive, as well as an InsP3-insensitive, Ca2+ pool has been characterized. But Ca2+ channels in the endoplasmic reticulum of rat exocrine pancreas have not been demonstrated at the level of single-channel current. We have now used the patch-clamp technique on endoplasmic reticulum vesicles fused by means of the dehydration-rehydration method. In excised patches, single Ba2(+)- and Ca2(+)-selective channels were recorded. The channel activity was markedly voltage-dependent. Caffeine increased channel open-state probability, whereas ruthenium red and Cd2+ blocked single-channel currents. Ryanodine, nifedipine and heparin had no effect on channel activity. The channel activity was not dependent on the free Ca2+ concentration, the presence of InsP3, or pH. We conclude that this calcium channel mediates Ca2+ release from an intracellular store through an InsP3-insensitive mechanism.