This article investigates the mechanistic aspects of mutant p53 "gain of function" in response to DNA damage. We show that mutant forms of p53 protein interact with NF-Y. The expression of cyclin A, cyclin B1, cdk1, and cdc25C, as well as the cdk1-associated kinase activities, is upregulated after DNA damage, provoking a mutant p53/NF-Y-dependent increase in DNA synthesis. Mutant p53 binds NF-Y target promoters and, upon DNA damage, recruits p300, leading to histone acetylation. The recruitment of mutant p53 to the CCAAT sites is severely impaired upon abrogation of NF-YA expression. Endogenous NF-Y, mutant p53, and p300 proteins form a triple complex upon DNA damage. We demonstrate that aberrant transcriptional regulation underlies the ability of mutant p53 proteins to act as oncogenic factors.