We have identified a non-selective cation channel on pancreatic duct cells. These epithelial cells secrete the bicarbonate ions found in pancreatic juice; a process controlled by the hormone secretin, which uses cyclic AMP as an intracellular messenger. The non-selective channel is located on both apical and basolateral plasma membranes of the duct cell, is equally permeable to sodium and potassium, and has a linear I/V relationship with a single-channel conductance of about 25 pS. Channel opening requires the presence of 1 microM Ca2+ on the cytoplasmic face of the membrane, and is also increased by depolarization. Intracellular ATP, ADP, magnesium, and a rise in pH all decreased channel activity. The channel was not affected by 10 mM TEA, 1 mM Ba2+ or 0.5 mM decamethonium applied to the cytoplasmic face of the membrane, but 0.5 mM quinine caused a flickering block which was more pronounced at depolarizing potentials. We observed the channel only rarely in cell-attached patches on unstimulated duct cells, and acute exposure to stimulants did not cause channel activation. However, after prolonged stimulation, the proportion of cell-attached patches containing active channels was increased 9-fold. The role of this channel in pancreatic duct cell function remains to be elucidated.