The neural correlates of habituation of response to startling tactile stimuli presented in a functional magnetic resonance imaging environment

Psychiatry Res. 2006 Nov 22;148(1):1-10. doi: 10.1016/j.pscychresns.2006.05.008. Epub 2006 Sep 25.

Abstract

Functional magnetic resonance imaging (fMRI) provides a means of identifying neural circuitry associated with startle and its modulation in humans. Twelve subjects who demonstrated eyeblink startle in the laboratory were recruited for an fMRI study in which they were scanned while presented with two identical runs consisting of alternating blocks of no stimuli and startling tactile stimuli. Together, behavioral and imaging data are consistent with a pattern of general cortical and thalamic activation induced by startling stimuli that shows habituation both across and within runs. From Run 1 to Run 2, both the eyeblink amplitude and the fMRI signal decreased. Within Run 1, there was a graded decrease in eyeblink amplitude and whole-brain fMRI signal across blocks of startling stimuli. A similar graded decrease was observed in the thalamus signal, as well. Thus, startling tactile stimuli initially induce widespread cortical and thalamic activity, perhaps mediated by the reticular activating system. The activity then habituates in a graded fashion with repeated presentations of the stimuli.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adult
  • Blinking / physiology*
  • Brain Mapping
  • Cerebral Cortex / physiology*
  • Dominance, Cerebral / physiology
  • Female
  • Frontal Lobe / physiology
  • Gyrus Cinguli / physiology
  • Habituation, Psychophysiologic / physiology*
  • Humans
  • Image Enhancement*
  • Image Processing, Computer-Assisted*
  • Magnetic Resonance Imaging*
  • Male
  • Nerve Net / physiology*
  • Oxygen / blood*
  • Parietal Lobe / physiology
  • Reflex, Startle / physiology*
  • Thalamus / physiology*
  • Touch / physiology*

Substances

  • Oxygen