The standardization and validation of a one-step, single-tube accelerated quantitative reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay is reported for rapid and real-time detection of Japanese encephalitis virus (JEV). The RT-LAMP assay reported in this study is very simple and rapid; the amplification can be obtained in 30 min under isothermal conditions at 63 degrees C by employing a set of six primers targeting the E gene of JEV. The RT-LAMP assay demonstrated exceptionally higher sensitivity compared to that of RT-PCR, with a detection limit of 0.1 PFU. The specificities of the selected primer sets were established by cross-reactivity studies with other closely related members of the JEV serocomplex as well as by evaluation of healthy human volunteers. The comparative evaluation of the RT-LAMP assay for clinical diagnosis with a limited number of patient cerebrospinal fluid samples revealed 85% concordance with conventional RT-PCR, with a sensitivity and a specificity of 100% and 86%, respectively. The concentration of virus in most of the clinical samples was 10(2) to 10(5) PFU/ml, as determined from the standard curve based on the time of positivity in the samples. In addition, the monitoring of gene amplification can also be visualized with the naked eye by using SYBR green I fluorescent dye. Thus, due to easy operation without a requirement of sophisticated equipment and skilled personnel, the RT-LAMP assay reported here is a valuable tool for the rapid and real-time detection of JEV not only by well-equipped laboratories but also by peripheral diagnostic laboratories with limited financial resources in developing countries.