Aim: To study the interaction between strychnine and bovine serum albumin.
Methods: Fluorescence spectroscopy and ultraviolet spectroscopy were used.
Results: The static quenching and the non-radiation energy transfer are the two main reasons to leading the fluorescence quenching of BSA. The apparent combining constants (K(A)) between strychnine and BSA are 3.72 x 10(3) at 27 degrees C, 4.27 x 10(3) at 37 degrees C, 4.47 x 10(3) at 47 degrees C and the combining sites are 1.01 +/- 0.03. The combining distance (r = 3.795 nm) and energy transfer efficiency (E = 0.0338) are obtained by Förster's non-radiation energy transfer mechanism.
Conclusion: The interaction between strychnine and BSA was driven mainly by hydrophobic force.