Aim: The morphinane-derivate 6-O-(2-[(18)F]fluoroethyl)-6-O-desmethyldiprenorphine ([(18)F]FDPN) is a nonselective opioid receptor ligand currently used in positron emission tomography (PET). Correction for plasma metabolites of the arterial input function is necessary for quantitative measurements of [(18)F]FDPN binding. A study was undertaken to investigate if there are gender dependent differences in the rate of metabolism of [(18)F]FDPN.
Methods: The rate of metabolism of [(18)F]FDPN was mathematically quantified by fitting a bi-exponential function to each individual's dynamic metabolite data.
Results: No statistically significant gender differences were found for age, weight, body mass index or dose. However, significant differences (p < 0.01) in two of the four kinetic parameters describing the rate of metabolism were found between the two groups, with women metabolizing [(18)F]FDPN faster than men. These differences were found in the contribution of the fast and slow kinetic components of the model describing the distribution of radioactive species in plasma, indicating a higher rate of enzyme-dependent degradation of [(18)F]FDPN in women than in men.
Conclusion: The findings reinforce the need for individualized metabolite correction during [(18)F]FDPN-PET scans and also indicate that in certain cases, grouping according to gender could be performed in order to minimize methodological errors of the input function prior to kinetic analyses.