Dystonia is characterized by sustained muscle contraction, which frequently causes repetitive, twisting movements or abnormal posture. The precise pathophysiological mechanisms of dystonia are still unknown. Several studies did demonstrate that, although motor cortex hyperexcitability appears to be responsible for abnormal co-contraction and overflow to adjacent muscles, plasticity mechanisms and integrative sensorimotor processing are also likely to be involved in this condition. Current dystonia treatments are based on oral medication, injection of botulinum toxin and, in a low proportion of cases, bi-pallidal deep brain stimulation. However, treatment outcome is generally disappointing. A few researchers have reported the application of repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex or the premotor cortex, with the goal of decreasing motor cortex hyperexcitability. This article reviews all studies using this technique in dystonia and discusses rTMS therapeutic impact and its possible mechanisms of action in this indication. Currently, the premotor cortex seems to be the best target for rTMS in dystonia. Rather than merely reducing the hyperexcitability of the primary motor cortex, this technique's clinical benefit seems to result from modifications in plasticity and restoration of sensorimotor integration. The corollary technique for chronic rTMS is electrical cortical stimulation. Even though this new therapeutic tool may have therapeutic promise, more studies are required to confirm it. In particular, we need to broaden our knowledge of rTMS impact on the various forms of dystonia and to optimize target localization.