A slit-slat collimator combines a slit along the axis of rotation with a set of axial septa, offering both magnification in the transaxial direction and complete sampling with just a circular orbit. This collimator has a sensitivity that increases for points near the aperture slit. The literature treats this collimator as having the same sensitivity as a single-pinhole collimator, ignoring the effect of the axial septa. Herein, the sensitivity and resolution of this collimator are reevaluated.
Methods: Experimental and Monte Carlo methods are used to determine the sensitivity and resolution in both the transaxial and axial directions as a function of distance from the slit (h). Eight configurations are tested, varying the slit width, septal spacing, and septal height.
Results: Both the experimental and the Monte Carlo sensitivities agree reasonably with an analytic form that is the geometric mean of the pinhole and parallel-beam formulas, disagreeing with previous literature. Transaxial resolution is consistent with the pinhole-resolution formula. Axial resolution is consistent with the parallel-beam resolution formula.
Conclusion: The sensitivity of this collimator is proportional to h(-1) and has resolution in the transaxial direction that is consistent with pinhole resolution and in the axial direction that is consistent with parallel-beam resolution.