Hexamerization of the bacteriophage T4 capsid protein gp23 and its W13V mutant studied by time-resolved tryptophan fluorescence

J Phys Chem B. 2006 Dec 14;110(49):25050-8. doi: 10.1021/jp064881t.

Abstract

The bacteriophage T4 capsid protein gp23 was studied using time-resolved and steady-state fluorescence of the intrinsic protein fluorophore tryptophan. In-vitro gp23 consists mostly of monomers at low temperature but forms hexamers at room temperature. To extend our knowledge of the structure and hexamerization characteristics of gp23, the temperature-dependent fluorescence properties of a tryptophan mutant (W13V) were compared to those of wild-type gp23. The W13V mutation is located in the N-terminal part of the protein, which is cleaved off after prohead formation in the live bacteriophage. Results show that W13 plays a role in the hexamerization process but is not needed to stabilize the hexamer once it is formed. Furthermore, besides the monomer-to-hexamer temperature transition (15-23 degrees C and 12-43 degrees C for wild-type and W13V gp23, respectively), we were able to observe denaturation of the N-terminus in hexameric wild-type gp23 around 40 degrees C. In addition, with the aid of a recently published homology model of gp23, the lifetimes obtained from time-resolved fluorescence measurements could tentatively be assigned to specific tryptophan residues.

MeSH terms

  • Capsid Proteins / chemistry*
  • Capsid Proteins / genetics
  • Capsid Proteins / metabolism
  • Models, Molecular
  • Mutation*
  • Spectrometry, Fluorescence
  • Time Factors
  • Tryptophan / chemistry*
  • Valine / chemistry*

Substances

  • Capsid Proteins
  • gp23 protein, Bacteriophage T4
  • Tryptophan
  • Valine