TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological process in prokaryotic genomes

Nucleic Acids Res. 2007 Jan;35(Database issue):D260-4. doi: 10.1093/nar/gkl1043. Epub 2006 Dec 6.

Abstract

TIGRFAMs is a collection of protein family definitions built to aid in high-throughput annotation of specific protein functions. Each family is based on a hidden Markov model (HMM), where both cutoff scores and membership in the seed alignment are chosen so that the HMMs can classify numerous proteins according to their specific molecular functions. Most TIGRFAMs models describe 'equivalog' families, where both orthology and lateral gene transfer may be part of the evolutionary history, but where a single molecular function has been conserved. The Genome Properties system contains a queriable set of metabolic reconstructions, genome metrics and extractions of information from the scientific literature. Its genome-by-genome assertions of whether or not specific structures, pathways or systems are present provide high-level conceptual descriptions of genomic content. These assertions enable comparative genomics, provide a meaningful biological context to aid in manual annotation, support assignments of Gene Ontology (GO) biological process terms and help validate HMM-based predictions of protein function. The Genome Properties system is particularly useful as a generator of phylogenetic profiles, through which new protein family functions may be discovered. The TIGRFAMs and Genome Properties systems can be accessed at http://www.tigr.org/TIGRFAMs and http://www.tigr.org/Genome_Properties.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Archaeal Proteins / classification
  • Archaeal Proteins / genetics
  • Archaeal Proteins / physiology*
  • Bacterial Proteins / classification
  • Bacterial Proteins / genetics
  • Bacterial Proteins / physiology*
  • Databases, Protein*
  • Genome, Bacterial
  • Genomics
  • Internet
  • Phylogeny
  • Software
  • User-Computer Interface

Substances

  • Archaeal Proteins
  • Bacterial Proteins