Aim: To identify a multi serum protein pattern as well as single protein markers using surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry (SELDI-TOF-MS) for detection and differentiation of liver fibrosis (F1-F2), liver cirrhosis (F4) and hepatocellular carcinoma (HCC) in patients with chronic hepatitis C virus (HCV).
Methods: Serum samples of 39 patients with F1/F2 fibrosis, 44 patients with F4 fibrosis, 34 patients with HCC were applied to CM10 arrays and analyzed using the SELDI-TOF ProteinChip System (PBS-IIc; Ciphergen Biosystems) after anion-exchange fractionation. All patients had chronic hepatitis C and histologically confirmed fibrosis stage/HCC. Data were analyzed for protein patterns by multivariate statistical techniques and artificial neural networks.
Results: A 4 peptide/protein multimarker panel (7486, 12,843, 44,293 and 53,598 Da) correctly identified HCCs with a sensitivity of 100% and specificity of 85% in a two way-comparison of HCV-cirrhosis versus HCV-HCC training samples (AUROC 0.943). Sensitivity and specificity for identification of HCC were 68% and 80% for random test samples. Cirrhotic patients could be discriminated against patients with F1 or F2 fibrosis using a 5 peptide/protein multimarker pattern (2873, 6646, 7775, 10,525 and 67,867 Da) with a specificity of 100% and a sensitivity of 85% in training samples (AUROC 0.976) and a sensitivity and specificity of 80% and 67% for random test samples. Combination of the biomarker classifiers with APRI score and alfa-fetopotein (AFP) improved the diagnostic performance. The 6646 Da marker protein for liver fibrosis was identified as apolipoprotein C-I.
Conclusion: SELDI-TOF-MS technology combined with protein pattern analysis seems a valuable approach for the identification of liver cirrhosis and hepatocellular carcinoma in patients with chronic hepatitis C. Most probably a combination of different serum markers will help to identify liver cirrhosis and early-stage hepatocellular carcinomas in the future.