Purpose: To prospectively evaluate whether subarachnoid hemorrhage (SAH) is associated with a change in the apparent diffusion coefficient (ADC) in normal-appearing brain parenchyma.
Materials and methods: Institutional review board approval and informed consent were obtained for all patient and volunteer studies. One hundred patients (48 men, 52 women; mean age, 52 years +/- 12 [standard deviation]) with aneurysmal SAH underwent conventional and diffusion-weighted magnetic resonance (MR) imaging at a mean of 9 days +/- 3 after SAH to evaluate possible lesions caused by SAH, treatment of SAH, and vasospasm. Aneurysms were treated surgically (n = 70) or endovascularly (n = 30) before MR imaging. Diffusion-weighted MR imaging was performed at 1-year follow-up in 30 patients (10 men, 20 women; mean age, 51 years +/- 11). Thirty healthy age-matched volunteers (11 men, 19 women; mean age, 54 years +/- 16) underwent MR imaging with an identical protocol. ADC values were measured bilaterally in the gray and white matter (parietal, frontal, temporal, occipital lobes; cerebellum; caudate nucleus; lentiform nucleus; thalamus; and pons) that appeared normal on T2-weighted and diffusion-weighted MR images. Linear mixed model was used for comparison of ADC values of supratentorial gray matter and white matter; general linear regression analysis was used for comparison of ADC values of cerebellum and pons.
Results: In patients with SAH, the ADC values in normal-appearing white matter, with a single exception in the frontal lobe (P = .091), were significantly higher than they were in healthy volunteers (P </= .011). The differences disappeared by 1 year, except in parietal white matter (P = .045). The ADC values of cortical gray matter did not significantly differ between patients and volunteers (P >/= .121).
Conclusion: SAH and its treatment may cause global mild vasogenic edema in white matter and deep gray matter that is undetectable on T2-weighted and diffusion-weighted MR images but is detectable by measuring the ADC value in the subacute stage of SAH.
(c) RSNA, 2007.