Objectives: Increased iron deposition in the brain may occur in several neurodegenerative diseases, including Alzheimer disease (AD). Iron deposits shorten T2 relaxation times on T2-weighted magnetic resonance (MR) images. Iron-dependent contrast increases with magnetic field strength. We hypothesized that T2 mapping using 3 T MR imaging (MRI) can disclose differences between normal controls and AD subjects.
Methods: High-resolution brain imaging protocols were developed and applied to 24 AD patients and 20 age-matched controls using 3 T MRI. Eight anatomical regions of interest were manually segmented, and T2 histograms were computed. A visual analysis technique, the heat map, was modified and applied to the large image data sets generated by these protocols.
Results: A large number (163) of features from these histograms were examined, and 38 of these were significantly different (P < 0.05) between the groups. In the hippocampus, evidence was found for AD-related increases in iron deposition (shortened T2) and in the concentration of free tissue water (lengthened T2). Imaging of a section of postmortem brain before and after chemically extracting the iron established the presence of MRI-detectable iron in the hippocampus, cortex, and white matter in addition to brain regions traditionally viewed as containing high iron concentrations.