Influence of the linac design on intensity-modulated radiotherapy of head-and-neck plans

Phys Med Biol. 2007 Jan 7;52(1):169-82. doi: 10.1088/0031-9155/52/1/011. Epub 2006 Dec 14.

Abstract

In this study, we quantify the impact of linac/MLC design parameters on IMRT treatment plans. The investigated parameters were leaf width in the MLC, leaf transmission, related to the thickness of the leaves, and penumbra related primarily to the source size. Seven head-and-neck patients with stage T1-T3N0-N2cM0 oropharyngeal cancer were studied. For each patient nine plans were made with a different set of linac/MLC parameters. The plans were optimized in Pinnacle(3) v7.6c and PLATO RTS v2.6.4, ITP v1.1.8. A hypothetical ideal linac/MLC was introduced to investigate the influence of one parameter at a time without interaction of other parameters. When any of the three parameters was increased from the ideal set-up values (leaf width 2.5 mm, transmission 0%, penumbra 3 mm), the mean dose to the parotid glands increased, given the same tumour coverage. The largest increase was found for increasing leaf transmission. The investigation showed that by changing more than one parameter of the ideal linac/MLC set-up, the increase in the mean dose was smaller than the sum of dose increments for each parameter separately. As a reference to clinical practice, we also optimized the plans of the seven patients with the clinically used Elekta SLi 15, equipped with a standard MLC with a leaf width of 10 mm. As compared to the ideal linac, this resulted in an increase of the average dose to the parotid glands of 5.8 Gy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Dose-Response Relationship, Radiation
  • Equipment Design*
  • Head and Neck Neoplasms / radiotherapy*
  • Humans
  • Oropharyngeal Neoplasms / radiotherapy
  • Parotid Gland / radiation effects
  • Particle Accelerators
  • Radiometry / methods
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted / methods*
  • Radiotherapy, Intensity-Modulated / methods*
  • Tomography, X-Ray Computed