X-ray absorption (XA) spectra have been computed based on water structures obtained from a recent fit to x-ray and neutron diffraction data using models ranging from symmetrical to asymmetrical local coordination of the water molecules [A. K. Soper, J. Phys.: Condens. Matter 17, S3273 (2005)]. It is found that both the obtained symmetric and asymmetric structural models of water give similar looking XA spectra, which do not match the experiment. The fitted models both contain unphysical structures that are allowed by the diffraction data, where, e.g., hydrogen-hydrogen interactions may occur. A modification to the asymmetric model, in which the non-hydrogen-bonded OH intramolecular distance is allowed to become shorter while the bonded OH distance becomes longer, improves the situation somewhat, but the overall agreement is still unsatisfactory. The electric field (E-field) distributions and infrared (IR) spectra are also calculated using two established theoretical approaches, which, however, show significant discrepancies in their predictions for the asymmetric structural models. Both approaches predict the Raman spectrum of the symmetric model fitted to the diffraction data to be significantly blueshifted compared to experiment. At the moment no water model exists that can equally well describe IR/Raman, x-ray absorption spectroscopy, and diffraction data.