Following adhesion of Helicobacter pylori to gastric epithelial cells, intracellular signaling leads to cytokine production, which causes H. pylori-related gastric injury. Two adjacent homologous genes (alpA and alpB), which encode H. pylori outer membrane proteins, are thought to be associated with adhesion and cytokine induction. We co-cultured gastric epithelial cells with wild type H. pylori strains and their corresponding alpA/alpB-deleted mutants (DeltaalpAB). Results were confirmed by complementation. Flow cytometry confirmed that AlpAB was involved in cellular adhesion. Deletion of alpAB reduced interleukin (IL)-6 induction in gastric epithelial cells. Deletion of alpAB reduced IL-8 induction with East Asian but not with Western strains. All AlpAB-positive strains tested activated the extracellular signal-regulated kinase, c-Fos, and cAMP-responsive element-binding protein. Activation of the Jun-N-terminal kinase, c-Jun, and NF-kappaB was exclusive to AlpAB from East Asian strains. DeltaalpAB mutants poorly colonized the stomachs of C57BL/6 mice and were associated with lower mucosal levels of KC and IL-6. Our results suggest that AlpAB may induce gastric injury by mediating adherence to gastric epithelial cells and by modulating proinflammatory intracellular signaling cascades. Known geographical differences in H. pylori-related clinical outcomes may relate to differential effects of East Asian and Western types of AlpAB on NF-kappaB-related proinflammatory signaling pathways.