Angiostatic therapies designed to inhibit neovascularization associated with multiple pathological conditions have only been partially successful; complete inhibition has not been achieved. We demonstrate synergistic effects of combining angiostatic molecules that target distinct aspects of the angiogenic process, resulting in the complete inhibition of neovascular growth associated with development, ischemic retinopathy, and tumor growth, with little or no effect on normal, mature tissue vasculature. Tumor vascular obliteration using combination angiostatic therapy was associated with reduced tumor mass and increased survival in a rat 9L gliosarcoma model, whereas individual monotherapies were ineffective. Significant compensatory up-regulation of several proangiogenic factors was observed after treatment with a single angiostatic agent. In contrast, treatment with combination angiostatic therapy significantly reduced compensatory up-regulation. Therapies that combine angiostatic molecules targeting multiple, distinct aspects of the angiogenic process may represent a previously uncharacterized paradigm for the treatment of many devastating diseases with associated pathological neovascularization.