Glycosphingolipids (GSL) have been implicated as potential atherogenic lipids. Inhibition of hepatic serine palmitoyl transferase (SPT) reduces plasma sphingomyelin (SM) levels in the absence of changes in cholesterol or triglyceride (TG) concentration and this leads to a reduction of atherosclerosis in apolipoprotein-E gene knockout (apoE(-/-)) mice. The possibility that the reduced atherosclerosis resulting from SPT inhibition is associated with decreases in plasma GSL concentration has not been examined and was the primary aim of this investigation. We show that intraperitoneal delivery of the SPT inhibitor myriocin for 9 weeks inhibits atherosclerosis in apoE(-/-) mice fed a high fat diet. Lesion inhibition was most pronounced at the aortic arch and distal sites of the thoracic and abdominal aorta. There was also a trend towards a reduction in lesion area at the aortic root. Myriocin treatment resulted in significant reductions in both plasma SM and GSL concentration of 42% and 25%, as assessed by enzymatic and HPLC methods, respectively. Moreover, SM and GSL concentrations were significantly correlated, indicating that SPT inhibition suppresses the synthesis of both these sphingolipids concomitantly. The inhibition of atherosclerosis induced by myriocin was not associated with changes in plasma cholesterol or TG concentrations or lipoprotein profiles as determined by FPLC. These data indicate that therapeutic reduction of plasma SM and/or GSL concentrations may offer a novel treatment for atherosclerosis.