Renin secretion and synthesis in renal juxtaglomerular cells are controlled by short feed back loops involving angiotensin II and the intrarenal blood pressure. The operating mechanisms of these negative feed back regulators are widely unknown, except for the fact that both require calcium to exert their inhibitory action. We here show that in the absence of connexin40 (Cx40), which form gap junctions between juxtaglomerular and endothelial cells, the negative control of renin secretion and synthesis by angiotensin II and by intravasal pressure is abrogated, while the regulation by salt intake and beta-adrenergic stimulation is maintained. Renin secretion from Cx40-deficient kidneys or wild-type kidneys treated with the nonselective gap junction blocker 18alpha-glycyrrhetinic acid (10 micromol/L) resembles the situation in wild-type kidneys in the absence of extracellular calcium. This disturbed regulation is reflected by an enhanced plasma renin concentration despite an elevated blood pressure in Cx40-deficient mice. These findings indicate that Cx40 connexins and likely intercellular communication via Cx40-dependent gap junctions mediate the calcium-dependent inhibitor effects of angiotensin II and of intrarenal pressure on renin secretion and synthesis. Because Cx40 gap junctions are also formed between renin producing cells and endothelial cells our finding could provide additional information to suggest that the endothelium may be strongly involved in the control of the renin system.