Hydrogen-induced transition from dissociative to molecular chemisorption of CO on vanadium clusters

J Am Chem Soc. 2007 Mar 7;129(9):2516-20. doi: 10.1021/ja066261b. Epub 2007 Jan 31.

Abstract

We report on the size-dependent interaction of carbon monoxide molecules with hydrogen covered vanadium clusters containing between 5 and 20 atoms. Structural information on these hydrogen covered vanadium clusters and their complexes with CO is obtained from infrared multiple photon dissociation spectroscopy, complemented with density functional theory calculations for the V5 to V9 cluster sizes. The non-dissociative or dissociative binding of CO on the metal clusters is detected by the presence or absence of the nu(CO) stretching band in the infrared spectra. It is found that the CO molecule dissociates on bare vanadium clusters, while it adsorbs intact on all saturated hydrogen covered V5-20+ clusters, with the distinctive exceptions of V5+, V9+, V11+, and V19+. We show that dissociative chemisorption is prevented when the potential binding sites of atomic C and O atoms are blocked by H atoms.