Objective: Recent published studies have shown that cartilage from ADAMTS-5-knockout mice, but not ADAMTS-4- or ADAMTS-1-knockout mice, is significantly protected from degradation. The present study was undertaken to evaluate the respective roles of these enzymes in human cartilage breakdown, using a small interfering RNA (siRNA) approach to assess the effects of inhibition of each enzyme in normal and osteoarthritic (OA) explants.
Methods: The activities of siRNA specifically targeting ADAMTS-1, -4, and -5 were assessed by transfection into primary human chondrocytes and cultured human cartilage explants. At 24 hours, a cytokine stimulus was applied to normal, but not OA, samples to initiate a catabolic response. At designated times, total RNA was isolated and gene expression was measured by quantitative real-time reverse transcription-polymerase chain reaction. Aggrecan release and aggrecanase-generated neoepitope formation were determined by dye binding analysis and Western blotting, respectively.
Results: Human chondrocytes and explants were efficiently transfected with siRNA that specifically decreased the expression of each targeted gene. Suppression of ADAMTS-4 and ADAMTS-5, individually or in combination, attenuated the degradation of aggrecan in cytokine-stimulated normal cartilage. A reduction in aggrecan degradation was also observed following siRNA-mediated knockdown of either gene in unstimulated OA cartilage. In contrast, knockdown of ADAMTS-1 failed to inhibit aggrecan loss.
Conclusion: Despite the apparent dominant role of ADAMTS-5 in genetically modified mice, our data suggest that both ADAMTS-4 and ADAMTS-5 contribute to the structural damage that characterizes human OA.