In Th1 and Th2 memory lymphocytes, the genes for the cytokines interleukin (IL)-4 and interferon-gamma (IFN-gamma) are imprinted for expression upon restimulation. This cytokine memory is based on expression of the transcription factors T-bet for IFN-gamma, and GATA-3 for IL-4, and epigenetic modification of the cytokine genes. In Th2 cells, expression of the cytokine IL-10 is also induced by GATA-3. Here, we show that this induction is initially not accompanied by epigenetic modification of the IL-10 gene. Only after repeated restimulation of a memory Th2 cell in the presence of IL-4, extensive histone acetylation of the IL-10 gene is detectable. This epigenetic imprinting correlates with the development of a memory for IL-10 in repeatedly restimulated Th2 cells. In Th1 cells, IL-10 expression is induced by IL-12, but the IL-10 gene lacks detectable histone acetylation. Accordingly, IL-10 expression in restimulated memory Th1 cells remains conditional on the presence of IL-12. This finding defines a potential anti-inflammatory role for IL-12 in Th1 recall responses. While in primary Th1 responses IL-12 is required to induce expression of the pro-inflammatory cytokine IFN-gamma, in secondary Th1 responses IFN-gamma re-expression is independent of IL-12, which still is able to induce expression of the anti-inflammatory cytokine IL-10.