RNA interference (RNAi) has emerged as one of the most important discoveries of the last years in the field of molecular biology. Following clarification of this highly conserved endogenous gene silencing mechanism, RNAi has largely been exploited as a powerful tool to uncover the function of specific genes and to understand the effects of selective gene silencing in mammalian cells both in vitro and in vivo. RNAi can be induced by direct introduction of chemically synthesized siRNAs into the cell or by the use of plasmid and viral vectors encoding for siRNA allowing a more stable RNA knockdown. Potential application of this technique both as a research tool and for therapeutic purposes has led to an extensive effort to overcome some critical constraints which may limit its successful application in vivo, including off-target and non-specific effects, as well as the relatively poor stability of siRNA. This review provides a brief overview of the RNAi mechanism and of its application in preclinical animal models of cancer.