Background: Recent studies have suggested that mature T cells can change their specificity through reexpression of recombination-activating genes (RAG) and RAG-mediated V(D)J recombination. This process is named receptor revision and has been observed in mature peripheral T cells from transgenic mice and human donors. However, whether thebreceptor revision in mature T cells is a random or orientated process remains poorly understood. Here we used the Jurkathuman T cell line, which represents a mature stage of T cell development, as a model to investigate the regulation of Tcell receptor (TCR) gene recombination.
Methods: TCR Dbeta-Jbeta signal joint T cell receptor excision DNA circles (sjTRECs) were determined by nested and seminested PCR. Double-strand DNA breaks at recombination signal sequences (RSSs) in the TCRVbeta chain locus were detected by ligation-mediated-PCR. Further analysis of the complementarity-determining region 3 (CDR3) size of the TCRVbeta chain was examined by the TCR GeneScan technique.
Results: RAG1, RAG2, and three crucial components of the nonhomologous DNA end-joining (NHEJ) pathway were readily detected in Jurkat. Characteristics of junctional diversity of Dbeta2-Jbeta2 signal joints and ds RSS breaks associated with the Dbeta2 5' and Dbeta 2 3' sites were detected in DNA from Jurkat cells. CDR3 size and the gene sequences of the TCRVbeta chain did not change during cell proliferation.
Conclusions: RAG1 and RAG2 and ongoing TCR gene recombination are coexpressed in Jurkat cells, but the ongoing recombination process may not play a role in modification of the TCR repertoire.However, the results suggest that Jurkat could be used as a model for studying the regulation of RAGs and V(D)J recombination and as a "special" model of the coexistence of TCR gene rearrangements and "negative" receptor revision.