Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis

Am J Pathol. 1992 Feb;140(2):301-16.

Abstract

The infiltration of monocytes into the vascular wall and their transformation into lipid-laden foam cells characterizes early atherogenesis. Macrophages are also present in more advanced human atherosclerotic plaques and can produce many mediators that may contribute to lesion formation and progression. Macrophage colony-stimulating factor (MCSF) enhances the proliferation and differentiation of monocyte progenitors and is required for the survival and activation of mature monocytes and macrophages. The authors therefore examined the expression of the MCSF gene in cultured human vascular endothelial (EC) and smooth muscle cells (SMC) as well as in atheromatous lesions from rabbits and humans. Growth arrested EC and SMC contain a low level of MCSF mRNA. Bacterial lipopolysaccharide (LPS), recombinant human interleukin-1 alpha (IL-1 alpha) or tumor necrosis factor alpha (TNF alpha) induced MCSF mRNA accumulation in a concentration-dependent manner in both EC and SMC. These stimuli induced large increases in MCSF mRNA with peak induction between 4-8 hours after treatment. LPS, IL-1 alpha, and TNF alpha stimulated EC and SMC also showed increased fluorescent antibody staining for MCSF protein and released immunoreactive MCSF in a time-dependent manner. In contrast, phorbol 12-myristate 13-acetate (PMA) was a less potent inducer of MCSF gene expression and iron-oxidized low-density lipoproteins (ox-LDL) did not increase consistently MCSF mRNA or the synthesis and secretion of immunoreactive protein. Northern analysis of mRNA isolated from the atheromatous aorta of rabbits fed a 1% cholesterol diet for 10 weeks showed elevated MCSF mRNA compared with controls. Immunostaining of atheromatous arterial lesions of rabbits demonstrated MCSF protein in association with intimal SMC as well as macrophages. Furthermore, polymerase chain reaction (PCR) analysis of MCSF mRNA in human atheromata showed higher levels than found in nonatherosclerotic arteries and veins. Since the authors found no mRNA for the MCSF receptor, c-fms, in cultured EC or SMC macrophages are likely the primary target for MCSF within atheromatous vessels. The authors therefore investigated the effects of MCSF on monocyte functions related to foam cell development. Treatment of cultured human monocytes with recombinant human MCSF (10(3) U/ml, 72 hr) led to the accumulation of mRNA for the acetyl-LDL (scavenger) receptor and apolipoprotein E (apo E). These studies establish that vascular EC and SMC produce substantial MCSF in response to a variety of stimuli. The local production of MCSF during atherogenesis may contribute to macrophage survival and proliferation or activate specific macrophage functions such as expression of the scavenger receptor and secretion of apo E.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Apolipoproteins E / genetics
  • Arteriosclerosis / metabolism*
  • Arteriosclerosis / pathology*
  • Base Sequence
  • Cells, Cultured
  • Cytokines / genetics
  • Cytokines / pharmacology
  • Endothelium, Vascular / metabolism
  • Endothelium, Vascular / pathology
  • Gene Expression Regulation / physiology
  • Humans
  • Immunohistochemistry
  • Macrophage Colony-Stimulating Factor / biosynthesis
  • Macrophage Colony-Stimulating Factor / drug effects
  • Macrophage Colony-Stimulating Factor / genetics*
  • Male
  • Membrane Proteins*
  • Molecular Sequence Data
  • Muscle, Smooth, Vascular / metabolism
  • Muscle, Smooth, Vascular / pathology
  • Polymerase Chain Reaction
  • RNA, Messenger / isolation & purification
  • Rabbits
  • Receptors, Immunologic / genetics
  • Receptors, Lipoprotein*
  • Receptors, Scavenger
  • Scavenger Receptors, Class B
  • Stimulation, Chemical

Substances

  • Apolipoproteins E
  • Cytokines
  • Membrane Proteins
  • RNA, Messenger
  • Receptors, Immunologic
  • Receptors, Lipoprotein
  • Receptors, Scavenger
  • Scarb1 protein, mouse
  • Scavenger Receptors, Class B
  • Macrophage Colony-Stimulating Factor