Melanocortinergic activation by melanotan II inhibits feeding and increases uncoupling protein 1 messenger ribonucleic acid in the developing rat

Endocrinology. 2007 Jul;148(7):3279-87. doi: 10.1210/en.2007-0184. Epub 2007 Apr 5.

Abstract

The hypothalamic neurocircuitry that regulates energy homeostasis in adult rats is not fully developed until the third postnatal week. In particular, fibers from the hypothalamic arcuate nucleus, including both neuropeptide Y (NPY) and alpha-MSH fibers, do not begin to innervate downstream hypothalamic targets until the second postnatal week. However, alpha-MSH fibers from the brainstem and melanocortin receptors are present in the hypothalamus at birth. The present study investigated the melanocortin system in the early postnatal period by examining effects of the melanocortin receptor agonist melanotan II (MTII) on body weight, energy expenditure, and hypothalamic NPY expression. Rat pups were injected ip with MTII (3 mg/kg body weight) or saline on postnatal day (P) 5 to P6, P10-P11, or P15-P16 at 1700 and 0900 h and then killed at 1300 h. Stomach weight and brown adipose tissue uncoupling protein 1 mRNA were determined. In addition, we assessed central c-Fos activation 90 min after MTII administration and hypothalamic NPY mRNA after twice daily MTII administration from P5-P10 or P10-P15. MTII induced hypothalamic c-Fos activation as well as attenuating body weight gain in rat pups. Stomach weight was significantly decreased and uncoupling protein 1 mRNA was increased at all ages, indicating decreased food intake and increased energy expenditure, respectively. However, MTII had no effect on NPY mRNA levels in any hypothalamic region. These findings demonstrate that MTII can inhibit food intake and stimulate energy expenditure before the full development of hypothalamic feeding neurocircuitry. These effects do not appear to be mediated by changes in NPY expression.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Animals, Suckling
  • Dose-Response Relationship, Drug
  • Eating / drug effects*
  • Female
  • Gastric Mucosa / metabolism
  • Gene Expression Regulation, Developmental / drug effects
  • Hypothalamus / drug effects
  • Hypothalamus / growth & development
  • Hypothalamus / metabolism
  • Immunohistochemistry
  • In Situ Hybridization
  • Ion Channels / genetics*
  • Male
  • Mitochondrial Proteins / genetics*
  • Neuropeptide Y / genetics
  • Organ Size / drug effects
  • Peptides, Cyclic / administration & dosage
  • Peptides, Cyclic / pharmacology*
  • Proto-Oncogene Proteins c-fos / metabolism
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Rats
  • Receptors, Corticotropin / agonists
  • Receptors, Corticotropin / metabolism*
  • Stomach / drug effects
  • Stomach / growth & development
  • Uncoupling Protein 1
  • alpha-MSH / administration & dosage
  • alpha-MSH / analogs & derivatives*
  • alpha-MSH / pharmacology

Substances

  • Ion Channels
  • Mitochondrial Proteins
  • Neuropeptide Y
  • Peptides, Cyclic
  • Proto-Oncogene Proteins c-fos
  • RNA, Messenger
  • Receptors, Corticotropin
  • Ucp1 protein, rat
  • Uncoupling Protein 1
  • melanotan-II
  • alpha-MSH