Honeybees originating from 10 different countries (Austria, Poland, Germany, Hungary, Slovenia, Nepal, Sri Lanka, the United Arab Emirates, Canada, and New Zealand) located on four continents were analyzed for the presence of deformed wing virus (DWV) nucleic acid by reverse transcription-PCR. Two target regions within the DWV genome were selected for PCR amplification and subsequent sequencing, i.e., a region within the putative VP2 and VP4 structural-protein genes and a region within the RNA helicase enzyme gene. DWV nucleic acid was amplified from 34 honeybee samples representing all the above-mentioned countries with the notable exception of New Zealand. The amplification products were sequenced, and phylogenetic analyses of both genomic regions were performed independently. The phylogenetic analyses included all sequences determined in this study as well as previously published DWV sequences and the sequences of two closely related viruses, Kakugo virus (KGV) and Varroa destructor virus 1 (VDV-1). In the sequenced regions, the DWV genome turned out to be highly conserved, independent of the geographic origins of the honeybee samples: the partial sequences exhibited 98 to 99% nucleotide sequence identity. Substitutions were most frequently observed at the same positions in the various DWV sequences. Due to the high level of sequence conservation, no significant clustering of the samples in the phylogenetic trees could be identified. On the other hand, the phylogenetic analyses support a genetic segregation of KGV and VDV-1 from DWV.