Skin color is one of the most distinct features in the human race. To assess the mechanisms of skin color variation, human skin substitutes (HSS) were constructed by grafting mixtures of cultured keratinocytes and melanocytes from a combination of donor skin types, together with light skin derived fibroblasts, into chambers inserted onto the back skin of severe combined immunodeficient (SCID) mice. The resulting complexion coloration of the HSS was relatively darker and lighter when dark and light skin derived keratinocytes, respectively, were combined with melanocytes derived from either light or dark skin. The melanin content in the epidermis and the maturation stage of melanosomes in basal keratinocytes were significantly increased in the HSS composed of dark compared to light skin derived keratinocytes. In addition, the ratio of individual/clustered melanosomes in recipient keratinocytes was increased in the former as opposed to the latter HSS. The genetic expression of endothelin-1, proopiomelanocortin, microphthalmia-associated transcription factor, tyrosinase, GP100, and MART1 were increased in HSS composed of dark vs. light skin derived keratinocytes. These data suggest that our HSS is a promising melanogenic model that demonstrates the role of the keratinocyte in regulating in part both melanogenesis and distribution of transferred melanosomes.