Cerebral ischemia disrupts the neurovascular unit, involving death of neuronal, glial, and endothelial cells (ECs) in the core and penumbra regions. Whereas the neuroprotective effect of recombinant human erythropoietin (rhEPO) has been widely investigated, its effects on ECs remain elusive. We now report the effects of rhEPO treatment on EC death and neurovasculature repair following a focal ischemic stroke in postnatal day 7 neonatal rats. rhEPO (5000 U/kg i.p.) was administered 60 min after ischemia and for the next 3 days. Western blot analysis revealed increased expression of neurovascular remodeling proteins, including Tie-1, angiopoietin-2, and basic fibroblast growth factor in rhEPO-treated pups. rhEPO treatment significantly reduced EC death in the ischemic penumbra region 12 to 72 h after ischemia examined by immunostaining of terminal deoxynucleotidyl transferase dUTP nick-end labeling and EC marker glucose transporter-1 (GLUT-1). Treatment with rhEPO increased proliferation of ECs and neuronal cells, revealed by costaining of 5-bromo-2'-deoxyuridine with GLUT-1 or with the neuronal marker protein (NeuN) 7 to 21 days after stroke. Specifically, rhEPO increased number of NeuN-positive cells in close proximity to proliferating microvessels. These results suggest for the first time that, in addition to its protection on neural cells, EPO protects ECs and promotes the neurovascular unit repair, which may contribute to its therapeutic benefits after neonatal ischemic stroke.