Nonribosomal peptide natural products are biosynthesized from amino acid precursors by nonribosomal peptide synthetases (NRPSs), which are organized into modules. For a typical NRPS initiation module, an adenylation (A) domain activates an amino acid and installs it onto a peptidyl carrier protein (PCP) domain as a thioester; an elongation module, which has a condensation (C) domain located between every consecutive pair of A and PCP domains, catalyzes the formation of the peptide bond between the upstream aminoacyl/peptidyl-S-PCP and the free amino group of the downstream aminoacyl-S-PCP. D-amino acid constituents in peptide natural products usually arise from the L-enantiomers through the action of integral epimerization (E) domains of an NRPS. The biosynthetic gene cluster for leinamycin, a hybrid nonribosomal peptide/polyketide containing a D-alanine moiety, does not encode a typical NRPS initiation module with the expected A-PCP-E domains; instead, it has only an A protein (LnmQ) and a PCP (LnmP), both of which are encoded by separate genes. Here we show the results of biochemical experiments as follows: (i) we demonstrate that LnmQ directly activates D-alanine as D-alaninyl-AMP and installs it onto LnmP to generate a D-alaninyl-S-PCP intermediate; (ii) we confirm that aminoacylation of LnmP by LnmQ in trans is the result of specific communication between the separate A and PCP proteins; and (iii) we reveal that leinamycin production can be improved by supplementation of exogenous D-alanine in the fermentation broth of Streptomyces atroolivaceous S-140. These findings unveil an unprecedented NRPS initiation module structure that is characterized by a discrete D-alanine-specific A protein and a PCP.