Adaptation of TCR repertoires to self-peptides in regulatory and nonregulatory CD4+ T cells

J Immunol. 2007 Jun 1;178(11):7032-41. doi: 10.4049/jimmunol.178.11.7032.

Abstract

Currently, it is not understood how the specificity of the TCR guides CD4(+) T cells into the conventional lineage (Tconv) vs directing them to become regulatory (Treg) cells defined by the Foxp3 transcription factor. To address this question, we made use of the "Limited" (LTD) mouse, which has a restricted TCR repertoire with a fixed TCRbeta chain and a TCRalpha chain minilocus. The TCR repertoires of Tconv and Treg cells were equally broad, were distinct, yet overlapped significantly, representing a less strict partition than previously seen between CD4 and CD8 T cells. As a group, the CDR3alpha motifs showed a significant trend to higher positive charge in Treg than in Tconv cells. The Tconv and Treg repertoires were both reshaped between thymus and periphery. Reducing the array of peptides presented by MHC class II molecules by introducing the H2-DM(o/o) mutation into the LTD mouse led to parallel shifts in the repertoires of Tconv and Treg cells. In both cases, the CDR3alpha elements were entirely different and strikingly shortened, relative to normal LTD mice. These peculiar sequences conferred reactivity to wild-type MHC class II complexes and were excluded from the normal repertoire, even among Treg cells, indicating that some forms of self-reactivity are incompatible with selection into the Treg lineage. In conclusion, the Treg repertoire is broad, with distinct composition and characteristics, yet significantly overlapping and sharing structural constraints with the repertoire of conventional CD4(+) T cells.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Autoantigens / genetics
  • Autoantigens / immunology
  • Autoantigens / metabolism
  • CD4-Positive T-Lymphocytes / cytology
  • CD4-Positive T-Lymphocytes / immunology
  • CD4-Positive T-Lymphocytes / metabolism
  • Cell Differentiation / genetics
  • Cell Differentiation / immunology
  • Cell Lineage / genetics
  • Cell Lineage / immunology
  • Epitopes, T-Lymphocyte / genetics
  • Epitopes, T-Lymphocyte / immunology*
  • Histocompatibility Antigens Class II / genetics
  • Histocompatibility Antigens Class II / metabolism
  • Mice
  • Mice, Transgenic
  • Molecular Sequence Data
  • Peptides / genetics
  • Peptides / immunology
  • Peptides / metabolism*
  • Receptors, Antigen, T-Cell / biosynthesis
  • Receptors, Antigen, T-Cell / genetics
  • Receptors, Antigen, T-Cell / metabolism*
  • Receptors, Antigen, T-Cell, alpha-beta / biosynthesis
  • Receptors, Antigen, T-Cell, alpha-beta / genetics
  • T-Lymphocytes, Regulatory / cytology
  • T-Lymphocytes, Regulatory / immunology*
  • T-Lymphocytes, Regulatory / metabolism*
  • Thymus Gland / cytology
  • Thymus Gland / immunology
  • Thymus Gland / metabolism

Substances

  • Autoantigens
  • Epitopes, T-Lymphocyte
  • H2-M antigens
  • Histocompatibility Antigens Class II
  • Peptides
  • Receptors, Antigen, T-Cell
  • Receptors, Antigen, T-Cell, alpha-beta