Satellite cells play a central role in mediating the growth and regeneration of skeletal muscle. However, whether satellite cells are stem cells, committed progenitors, or dedifferentiated myoblasts has remained unclear. Using Myf5-Cre and ROSA26-YFP Cre-reporter alleles, we observed that in vivo 10% of sublaminar Pax7-expressing satellite cells have never expressed Myf5. Moreover, we found that Pax7(+)/Myf5(-) satellite cells gave rise to Pax7(+)/Myf5(+) satellite cells through apical-basal oriented divisions that asymmetrically generated a basal Pax7(+)/Myf5(-) and an apical Pax7(+)/Myf5(+) cells. Prospective isolation and transplantation into muscle revealed that whereas Pax7(+)/Myf5(+) cells exhibited precocious differentiation, Pax7(+)/Myf5(-) cells extensively contributed to the satellite cell reservoir throughout the injected muscle. Therefore, we conclude that satellite cells are a heterogeneous population composed of stem cells and committed progenitors. These results provide critical insights into satellite cell biology and open new avenues for therapeutic treatment of neuromuscular diseases.