A laser-based angle resolved photoemission (ARPES) system utilizing 6 eV photons from the fourth harmonic of a mode-locked Ti:sapphire oscillator is described. This light source greatly increases the momentum resolution and photoelectron count rate, while reducing extrinsic background and surface sensitivity relative to higher energy light sources. In this review, the optical system is described, and special experimental considerations for low-energy ARPES are discussed. The calibration of the hemispherical electron analyzer for good low-energy angle-mode performance is also described. Finally, data from the heavily studied high T(c) superconductor Bi(2)Sr(2)CaCu(2)O(8+delta) (Bi2212) is compared to the results from higher photon energies.