Cocaine affects sensory perception and attention, but little is known about the neural substrates underlying these effects in the human brain. We used functional magnetic resonance imaging (fMRI) and a sustained visuospatial attention task to assess if the visual attention network is dysfunctional in cocaine abusers (n=14) compared to age-, gender-, and education-matched controls (n=14). Compared with controls, cocaine abusers showed (1) hypo-activation of the thalamus, which may reflect noradrenergic and/or dopaminergic deficits; (2) hyper-activation in occipital and prefrontal cortices, which may reflect increased visual cortical processing to compensate for inefficient visual thalamic processing; and (3) larger deactivation of parietal and frontal regions possibly to support the larger hemodynamic supply to the hyper-activated brain regions. These findings provide evidence of abnormalities in thalamo-cortical responses in cocaine abusers that are likely to contribute to the impairments in sensory processing and in attention. The development of therapies that diminish these thalamo-cortical deficits could improve the treatment of cocaine addiction.