A process independent of the anaphase-promoting complex contributes to instability of the yeast S phase cyclin Clb5

J Biol Chem. 2007 Sep 7;282(36):26614-22. doi: 10.1074/jbc.M703744200. Epub 2007 Jul 9.

Abstract

Proteolytic destruction of many cyclins is induced by a multi-subunit ubiquitin ligase termed the anaphase promoting complex/cyclosome (APC/C). In the budding yeast Saccharomyces cerevisiae, the S phase cyclin Clb5 and the mitotic cyclins Clb1-4 are known as substrates of this complex. The relevance of APC/C in proteolysis of Clb5 is still under debate. Importantly, a deletion of the Clb5 destruction box has little influence on cell cycle progression. To understand Clb5 degradation in more detail, we applied in vivo pulse labeling to determine the half-life of Clb5 at different cell cycle stages and in the presence or absence of APC/C activity. Clb5 is significantly unstable, with a half-life of approximately 8-10 min, at cell cycle periods when APC/C is inactive and in mutants impaired in APC/C function. A Clb5 version lacking its cyclin destruction box is similarly unstable. The half-life of Clb5 is further decreased in a destruction box-dependent manner to 3-5 min in mitotic or G(1) cells with active APC/C. Clb5 instability is highly dependent on the function of the proteasome. We conclude that Clb5 proteolysis involves two different modes for targeting of Clb5 to the proteasome, an APC/C-dependent and an APC/C-independent mechanism. These different modes apparently have overlapping functions in restricting Clb5 levels in a normal cell cycle, but APC/C function is essential in the presence of abnormally high Clb5 levels.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anaphase-Promoting Complex-Cyclosome
  • Cyclin B / genetics
  • Cyclin B / metabolism*
  • Cyclins / genetics
  • Cyclins / metabolism
  • G1 Phase / physiology*
  • Half-Life
  • Proteasome Endopeptidase Complex / genetics
  • Proteasome Endopeptidase Complex / metabolism
  • Protein Processing, Post-Translational / physiology*
  • S Phase / physiology*
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*
  • Ubiquitin-Protein Ligase Complexes / genetics
  • Ubiquitin-Protein Ligase Complexes / metabolism*

Substances

  • CLB5 protein, S cerevisiae
  • Cyclin B
  • Cyclins
  • Saccharomyces cerevisiae Proteins
  • Ubiquitin-Protein Ligase Complexes
  • Anaphase-Promoting Complex-Cyclosome
  • Proteasome Endopeptidase Complex