Protein phosphatase 2A (PP2A) is a family of multifunctional serine/threonine phosphatases all composed of a catalytic C, a structural A, and a regulatory B subunit. Assembly of the complex with the appropriate B subunit forms the key to the functional specificity and regulation of PP2A. Emerging evidence suggests a crucial role for methylation and phosphorylation of the PP2A C subunit in this process. In this study, we show that PP2A C subunit methylation was not absolutely required for binding the PR61/B' and PR72/B'' subunit families, whereas binding of the PR55/B subunit family was determined by methylation and the nature of the C-terminal amino acid side chain. Moreover mutation of the phosphorylatable Tyr(307) or Thr(304) residues differentially affected binding of distinct B subunit family members. Down-regulation of the PP2A methyltransferase LCMT1 by RNA interference gradually reduced the cellular amount of methylated C subunit and induced a dynamic redistribution of the remaining methylated PP2A(C) between different PP2A trimers consistent with their methylation requirements. Persistent knockdown of LCMT1 eventually resulted in specific degradation of the PR55/B subunit and apoptotic cell death. Together these results establish a crucial foundation for understanding PP2A regulatory subunit selection.