Single-neutron states in (101)Sn

Phys Rev Lett. 2007 Jul 13;99(2):022504. doi: 10.1103/PhysRevLett.99.022504. Epub 2007 Jul 12.

Abstract

The first data on the relative single-particle energies outside the doubly magic (100)Sn nucleus were obtained. A prompt 171.7(6) keV gamma-ray transition was correlated with protons emitted following the beta decay of (101)Sn and is interpreted as the transition between the single-neutron g(7/2) and d(5/2) orbitals in (101)Sn. This observation provides a stringent test of current nuclear structure models. The measured nug(7/2)-nud(5/2) energy splitting is compared with values calculated using mean-field nuclear potentials and is used to calculate low-energy excited states in light Sn isotopes in the framework of the shell model. The correlation technique used in this work offers possibilities for future, more extensive spectroscopy near (100)Sn.