Precisely engineered tunnel junctions exhibit a long sought effect that occurs when the energy of the electron is comparable to the potential energy of the tunneling barrier. The resistance of metal-insulator-metal tunnel junctions oscillates with an applied voltage when electrons that tunnel directly into the barrier's conduction band interfere upon reflection at the classical turning points: the insulator-metal interface and the dynamic point where the incident electron energy equals the potential barrier inside the insulator. A model of tunneling between free electron bands using the exact solution of the Schrödinger equation for a trapezoidal tunnel barrier qualitatively agrees with experiment.