Intra-sarcoplasmic reticulum free [Ca2+] and buffering in arrhythmogenic failing rabbit heart

Circ Res. 2007 Oct 12;101(8):802-10. doi: 10.1161/CIRCRESAHA.107.152140. Epub 2007 Aug 17.

Abstract

Smaller Ca2+ transients and systolic dysfunction in heart failure (HF) can be largely explained by reduced total sarcoplasmic reticulum (SR) Ca2+ content ([Ca]SRT). However, it is unknown whether low [Ca]SRT is manifest as reduced: (1) intra-SR free [Ca2+] ([Ca2+]SR), (2) intra-SR Ca2+ buffering, or (3) SR volume (as percentage of cell volume). Here we assess these possibilities in a well-characterized rabbit model of nonischemic HF. In HF versus control myocytes, diastolic [Ca2+]SR is similar at 0.1-Hz stimulation, but the increase in both [Ca2+]SR and [Ca]SRT as frequency increases to 1 Hz is blunted in HF. Direct measurement of intra-SR Ca2+ buffering (by simultaneous [Ca2+]SR and [Ca]SRT measurement) showed no change in HF. Diastolic [Ca]SRT changes paralleled [Ca2+]SR, suggesting that SR volume is not appreciably altered in HF. Thus, reduced [Ca]SRT in HF is associated with comparably reduced [Ca2+]SR. Fractional [Ca2+]SR depletion increased progressively with stimulation frequency in control but was blunted in HF (consistent with the blunted force-frequency relationship in HF). By studying a range of [Ca2+]SR, analysis showed that for a given [Ca]SR, fractional SR Ca2+ release was actually higher in HF. For both control and HF myocytes, SR Ca2+ release terminated when [Ca2+]SR dropped to 0.3 to 0.5 mmol/L during systole, consistent with a role for declining [Ca2+]SR in the dynamic shutoff of SR Ca2+ release. We conclude that low total SR Ca2+ content in HF, and reduced SR Ca2+ release, is attributable to reduced [Ca2+]SR, not to alterations in SR volume or Ca2+ buffering capacity.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arrhythmias, Cardiac / metabolism*
  • Arrhythmias, Cardiac / pathology
  • Calcium / metabolism*
  • Calcium / physiology
  • Female
  • Heart Failure / metabolism*
  • Heart Failure / pathology
  • Male
  • Muscle Cells / metabolism
  • Muscle Cells / pathology
  • Rabbits
  • Sarcoplasmic Reticulum / metabolism*
  • Sarcoplasmic Reticulum / pathology

Substances

  • Calcium