Dendritic cells loaded with tumor-derived peptides induce protective CTL responses and are under evaluation in clinical trails. We report in this study that prophylactic administration of dendritic cells loaded with a MHC class II-restricted peptide derived from a model tumor Ag (Leishmania receptor for activated C kinase (LACK)) confers protection against LACK-expressing TS/A tumors, whereas therapeutic vaccination fails to cure tumor-bearing mice. Although CD4+ T cell-directed dendritic cell vaccination primed effector-like (CD44(high)CD62L(low), IL-2(+), IFN-gamma(+)) and central memory-like lymphocytes (CD44(high)CD62L(high), only IL-2(+)) in tumor-free mice, this was not the case in tumor-bearing animals in which both priming and persistence of CD4+ T cell memory were suppressed. Suppression was specific for the tumor-associated Ag LACK, and did not depend on CD25+ T cells. Because T cell help is needed for protective immunity, we speculate that the ability of tumors to limit vaccine-induced CD4+ T cell memory could provide a partial explanation for the limited efficacy of current strategies.