Ranibizumab inhibits multiple forms of biologically active vascular endothelial growth factor in vitro and in vivo

Exp Eye Res. 2007 Oct;85(4):425-30. doi: 10.1016/j.exer.2007.05.008. Epub 2007 Jun 13.

Abstract

Neovascular age-related macular degeneration (AMD) is the leading cause of blindness in older adults in the Western world. Ranibizumab (Lucentis), a humanized antibody fragment directed against vascular endothelial growth factor (VEGF-A), was recently approved by the US Food and Drug Administration (FDA) for the treatment of neovascular AMD. The objective of this study was to characterize the binding affinity and pharmacological activity of ranibizumab for 3 biologically active forms of VEGF-A: VEGF165, VEGF121, and VEGF110. The apparent equilibrium binding affinity of ranibizumab for VEGF-A molecules was determined by Biacore analysis; the biological activity of VEGF-A was demonstrated in a human umbilical vein endothelial cell (HUVEC) proliferation-inhibition assay. Inhibition of VEGF-A-induced vascular permeability by ranibizumab was assessed in vivo using hairless guinea pigs and a modified Miles assay. Ranibizumab was capable of binding to recombinant human VEGF165, VEGF121, and VEGF110 (KD < or = 192 pM), inhibiting VEGF-A-induced HUVEC proliferation in a concentration-dependent manner. Ranibizumab also exerted potent dose-dependent inhibition (IC(50) of 0.4-1.2 nM) of the vascular permeability-enhancing activity of VEGF165, VEGF121, and VEGF110 in the Miles assay. In conclusion, these results show that ranibizumab is capable of binding to and specifically inhibiting the activities of 3 biologically active forms of VEGF-A. As VEGF-A plays a pivotal role in the pathogenesis of neovascular AMD, ranibizumab activity, as demonstrated in this study, supports its clinical utility in the treatment of this disease.

MeSH terms

  • Angiogenesis Inhibitors / metabolism
  • Angiogenesis Inhibitors / pharmacology*
  • Animals
  • Antibodies, Monoclonal / metabolism
  • Antibodies, Monoclonal / pharmacology*
  • Antibodies, Monoclonal, Humanized
  • Capillary Permeability / drug effects
  • Cell Proliferation / drug effects
  • Cells, Cultured
  • Dose-Response Relationship, Drug
  • Endothelium, Vascular / cytology
  • Endothelium, Vascular / drug effects
  • Guinea Pigs
  • Humans
  • Ranibizumab
  • Recombinant Proteins / metabolism
  • Skin / blood supply
  • Vascular Endothelial Growth Factor A / antagonists & inhibitors*
  • Vascular Endothelial Growth Factor A / metabolism
  • Vascular Endothelial Growth Factor A / pharmacology

Substances

  • Angiogenesis Inhibitors
  • Antibodies, Monoclonal
  • Antibodies, Monoclonal, Humanized
  • Recombinant Proteins
  • VEGFA protein, human
  • Vascular Endothelial Growth Factor A
  • Ranibizumab