A robust culture system is critical for maintaining both proliferation and the developmental potential of human embryonic germ (hEG) cells. Here, we use human embryonic lung fibroblasts (hELF) overexpressing leukemia inhibitory factor (LIF) as feeder cells to support the self-renewal of hEG cells. We examine the morphology, gene expression, and developmental potential of hEG cells grown on a feeder layer of LIF-expressing hELF (hELF/lif) cells. hEG cells were positive for alkaline phosphatase (AP), stage-specific embryonic antigen (SSEA)-1, SSEA-4, tumor rejection antigen (TRA)-1-60, and TRA-1-81. In addition, hEG cells maintained on hELF/lif expressed higher levels of pluripotency genes such as Oct4 and Nanog. In addition, hEG cells maintained on hELF/lif cells gave rise to differentiated tissues when grown as embryoid bodies, consistent with the broad developmental potential of the starting population. Our results suggest that a hELF/lif feeder layer can support the proliferation of hEG cells, and that LIF signaling plays an essential role in this process. This human-derived culture system provides an attractive alternative to more commonly used mouse-derived feeder layers for use in clinical applications.
(c) 2007 S. Karger AG, Basel.